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The competitive growth mode(€GM) involving only one kind of particles, are a mixture of two processes,
one with probabilityp and the other with probability 1p: Thep dependance produce crossovers between two
different regimes. We demonstrate that the coefficients of the continuous equation, describing their universality
classes, are quadratic m(or 1-p). We show that the origin of such dependance is the existence of two
different average time rates. Thus, the quadrptitependance is a universal behavior of all {g&M). We
derive analytically the continuous equations for two CGM, in 1+1 dimensions, from the microscopic rules
using a regularization procedure. We propose generalized scalings that reproduce the scaling behavior in each
regime. In order to verify the analytic results and the scalings, we perform numerical integrations of the derived
analytical equations. The results are in excellent agreement with those of the microscopic CGM presented here
and with the proposed scalings.
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Evolving growing interfaces or surfaces can be found inistic of an Edward WilkinsoEW) equation, where the co-
many physical, chemical and biological processes. For exefficient associated with the surface tensiodepends orp.
ample, in film growth either by vapor deposition or chemical The dependance afon p governs the transition from RDSR
deposition[1,2], bacterial growtH{3] and propagation of for- to RD. Using a dynamic scaling ansatz for the interface
est fire[4]. The resulting interface has a rough surface that isvidth W they found that the results are consistent provided
characterized through scaling of the interfacial withhde-  that v p?. Also Pellegrini and Jullieri7] have introduced
fined asW(L,t)={([h;—(h)]?)Y2, whereh; is the height at CGM between ballistic depositio(BD) with probability p
the positioni, <hi>:2:_:dl h is the spatial averagd, is the and RDSR with probability 1p, called BD/RDSR. For this

linear sized is the spatial dimension ar{dl denote configu- Model Chame and Aardo Rej] presented a more careful
ration averages. The general scaling relatjah for these analysis inl +1-d and showed that there exists a slow cross-

growing interfaces that evolves through a single model ca@Ver from an EW to a Kardar-Parisi-ZharigPZ) for any
be summarized in the formV(L,t)~L*f(t/L?), where the P>0. They also found that the paramefeis connected to
scaling functionf(u) behaves ag(u)~u? (8=z/a), for u the coefficient\ of the nonlinear term of the KPZ equation

by A ~p?, with y=2.1.

e In this communication, we show that the origin of such
dependance is the existence of two different average time
fates. Thus, the quadraticdependance is a universal feature
of all the CGM. Thep dependance on the coefficients of the
continuous equations is obtained analytically from the micro-

<1 andf(u)~ const foru> 1. The exponeni describes the
asymptotic behavior where the width saturates due to finit
sizes effects, while the expone@trepresents the early time
regime where finite-size effects are weak. The crossover tim
between the two regimes is=L~

The study of growth models involving one kind of par- . .
ticle in competitive processes has received little attention, irpcoPIC dynamics. . . .
spite of the fact that they are more realistic describing the In order to test our hypothesis, we derive the analytical

growing in real materials, where usually there exists a comgontinuous equations for the local height for the RDSR/RD

petition between different growing processes. As an exand BD/RDSR models. The procedure chosen here is based

ample, in a colony of bacteria growing on a substrate, a ned" regularization and coarse graining of the discrete Lange-

bacteria can be borne near to another and stay there, moyd! equations obtained from a Kramers-Moyal expansion of

into another place looking for food or die. This “bacteria” the master equatiofd—11.

can be thought as a particle undergoing either a depositiorlll Lelf uts m(tjrodutcebflrsét :Ee rg]]e_ni;alfttrﬁz_itt?ent Of. th'.f prtob—
evaporation process or deposition/surface relaxation. em. Let us denote bl(t) the height of theth generic site a

The processes involved in the competitive growth modeldimet- The seth;,i=1,... L} defines the interface. Here we

(CGM) could have different characteristic average time ratedistinguish between two competitive processesvith prob-

Recently Shapiet al. [5] reported experimental results of @Pility p and average time of depositiog, and B with prob-

surface roughening during cyclical electrodeposition dissolu@Pility 1-p and average time of depositiag. In deposition

tion of silver. Horowitz, Monetti, and Albangs] introduced ~ Processes lwnho:l the average time of depositiory is
a competitive growth model between random deposition wittdiven by 7o"={dh/dt},-y). If the process is made with prob-
surface relaxatiofRDSR) with probability p and random  ability p then 7'={dh/dt}y=p {dh/dt},-y). The same
deposition (RD) with probability 1—-p, called RDSR/RD. holds for a process with probabilityl —p). Thus, the par-

The authors proposed that the scaling behavior is characteticles are deposited at an average rate
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To 7o a,

W=, TeE (1) Ki*®'==(1-p)af, (7)
p 1-p 78

In the average time of each process, the height in thei sitewhere the rules for both processes can we written as
increases by L
wi( =1

hi(t+7) =hi(t) +a,p R, '
o = OHOH™),
hi(t+ 7g) = (1) +a, (1 - p)R?, 2)

WhereF\ﬁA and R,!3 are the growing rules for processasand o® = {1[1 —O(H"Y]+ @(Hi+l)}[1 —OHY]
B, respectively, andh, is the vertical lattice spacing. Ex- ' 2 : ' b
pandingh;(t+7,) andh,(t+73) to second order in Taylor se-
ries aroundr, and 7z, we obtain 1 A _ _

o= 5[1 —OHHI+OH™ ([1-0H™], (8

dhy
hi(t+ 7)) = hi(t) =~ — 73, ©) i+s . ,
dt whereH;3;=(hi.s—hiw)/a,, and®(z) is the unit step func-

for the process=A,B. Thus, the evolution equation for the tion defmeq af(z)=1 for z=0 anql@(z)zo forz<0. The
height(in the sitei) for this CGM is given by represeor;ltatlon of t_hgz step fu_nctlon can be exp_anded as
0(2)=3,_, ¢ Z* providing thatz is smooth. In any discrete
dh _ an . ap model there is in principle an infinite number of nonlineari-
P B 7, (4 ties, but at long wavelengths the higher order derivatives can
be neglected using scaling arguments, since one expects af-
where the first moments of the transition rate for each profine interfaces over a long range of scales, and then one is

cess[12,13 are usually concerned with the form of the relevant terms. Thus,
keeping the expansion of the step function to first order in his
K(LA) = a_Lp RA argument and replacing the expansion &), Eq.(4) can be
: A ’ written as

AZ
(1 +cla—'> +(), (9

L

a %:ai(l_p)_‘_aip
KiH®'=—(1-pR?, (5) dt - T
B

where A%h=h;, = 2h+hi, =af #h/ax?,, and a is the
horizontal lattice spacing. Replacing the rates given by Eg.
(1) in EqQ. (9) and using a standard coarse-grain approach
{7l|(t) ﬂj(t')} — aL(Ki(l‘A) + Ki(l,B)) 5” 5(1: _ tr) (6) [10,1]] the continuous equatiOﬂ for this CGM is

and the Gaussian thermal noiggt) has zero mean and co-
variance

In order to test our analytical result, we use two models. dh _ @
The first model RDSR/RD6] considers a mixture of RDSR dt F(p) + V(p)axz +ax0), (10
(processA) with probability p and RD(proces®) with prob-
ability 1-p. Let us introduce the growth rule for each pro- Whereh=h(x,t) and
cess for the first model. In the RD growth model one chose a
column of a lattice, at random, amorgand a particle is F(p) = a_L[(l_p)2+ 2],
launched until it reaches the top of the selected column. The 7o
RDSR is a variant of the RD: a particle is released from a
random position but when it reaches the top of the selected @‘2
column is allowed to relax to the lowest nearest neighbor v(p) =2 ¢~ p?
(nn) column if at least one of the nn heights is lower than the (0
selected one. If the helght of both of the nn is lower than therhe noise covariance is given by
selected one the relaxation takes place with equal probability
to one of them. For RDW(L,t) does not depend obn. This {n(x, ) p(x",t")} =D(p)S(x—x")s(t—t'), (12
means that the widthV does not saturate due to the lack of

11

lateral correlations. Thus, in this modé&\(t) ~ t#ro. More- where
over, the RDSR model generates lateral co_rrelatlons, there- D(p) =aa, F(p). (13)
fore one ha®Bzpsr=1/4 andarpsg=1/2. Thefirst moment
of the transition rate for these processes is Equations(11) and(13) show that the quadratic dependance
on the coefficients of the continuous equation, arises natu-
a . .
KO = Zp(0@ + 03+ 0), rally as a feature of the CGM and is due to the existence of
T different average time rates.
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FIG. 1. (a) Log-log plot of W21(p)/D(p) for the RDSR/RD model as function of(p)t for L=128. The different symbols represent
different values of, p=0.04(c), p=0.08(1), p=0.016(A), p=0.32(+), andp=0.64(*). Here we use€=2.58 ancb=0.2 as parameters
of the ®-function representation. The dashed lines are used as guides to show the RD regimg=itlard the EW regime with 2
=0.5.(b) Log-log plot of W21(p)/D(p) for the BD/RDSR model as function efp)t for L=1024. The symbols represent the same as in Fig.
1(a). Here we used=0.18 ando=0.5. The collapse of the curves at the earlier stage clearly shows the EW be2g4d.5). After this
stage the curves split and undergo a slow crossover to the KPZ beliagio0.66. The dashed lines are used as guides to show the EW
regime with 28=1/2 and the KPZegime. The slope showed here i820.61.

The second model is a mixture of RDSR with probability 39|2
1-p (B procesgand ballistic depositiofBD) with probabil- Ap) =
ity p (A process [8]. The evolution rules for RDSR are!,
with j=2,3,4[see Eq.8)]. In the BD model, the incident The covariance of noise arid(p) is given by Eq.(12) and
particle follows a straight trajectory and sticks to the surfacg13), respectively. Notice that we have to chargby 1-p
at the columni. The height in the columm is increased in in all the above equations for RDSR, because in the first
max h;+1,h;,1,hi_4]. If this process is done with probability model RDSR is a kindA process and now is a kind B pro-

p%cy(5 - 4co—Cy).
Toa,

p (A proces$, the rules can be summarized as cess. Equatioil6) shows again the quadratic dependance on
_ _ the coefficients of the continuous equation. The quadratic
wi(5) =0O(H,)OH,_)), dependance af on p, found by Chame and Aardo R4i],

is a general feature of the CGM.

©6) _ yi+1 i -1 As both models have an EW behavior, it is expected that
@ =HTIL - O(HL )] - O(HD], in that regime the following generalized scaling angétz4]

. . 4 (14

0" =H™1-0(H_)[1-0HD], WA(p,L,t) ~ L*[D(p)/u(p)If (W(p)tIL?), 17)
wheref(u) ~ u?? for u<1 andf(u) ~const foru>1. More-

©®_ 1 i - i - : over, the second model is represented by a mixture of EW

w = 55(Hi—1:0){Hi [1-OH,)]+H T1-0H_)]}, and KPZ universality classes. In the early time regime
W(t) ~tProsk while a crossover to a KPZ, witBgp,=1/3

where 8(z,00=0(2) +0(-2)-1 is the Kronecker delta. Fol- and a= axpz=1/2, is expected in the intermediate regime
lowing the steps leading to EGL0) the evolution equation before the saturation. Thus, for the KPZ regime we propose

for this process can be written as the fqllowing generalizationf15] of the scaling behavior of
the width:
2 2 —_—
dh_ F(p) + V<p>‘9—*; + x(p)<‘9—h> +7(xt), (15 WA(p,L,t) ~ L*[D(p)/(p)If (\(p)VD(p)/ v(p) t/L?),
dt aX X (19)
where wherez=3/2, andf(u) ~ u2«pz for u< 1 andf(u) ~ const for
u>1.
Qi 2,22 In order to test our analytical result and the proposed scal-
F(p) = T (@ -p "+ P, ings, we perform a numerical integration of Ed.0) and

(15), and computaN? for both models.
1 Notice that in order to numerically integrate the continu-
al 2 2} ous equation, we do need a continuum representation of the
=—| =p(1l—-co—2cocy) +2¢4(1 - , (16 : ' . oy
") 7-0{ P(L = Co = 26Cy) + 2¢4(1 - p) (18 & function to numerically compute the coefficiemtsandc,
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related to the ones of the continuous equations. To perforn T '
the numerical integration, we chose the shifted hyperbolic
tangent[16] as the continuous representation@ffunction
defined as®(x)={1+tanfC(x+b)]}/2, whereb is the shift

andC is a parameter that allows one to recover &hén the

limit C—oo. The numerical integration was made in short
lattices using a discretized version of the continuous Eqs.”a
(10) and(15). The results in large systems and the details of! 102 F
the integration are beyond the scope of this communicatior
and will be published elsewhere.

For the first model, Horowitz, Monetti, and Albari6]
presented their data from simulations plotting the scaling re-
lation W/L%p~¢ vs t/L%p™. Clearly, theird=1 andy=2 is
related to ourv(p) andD(p) [see Eq(11) and(13)]. In Fig. 107"
1(a) we plot W? »(p)/D(p) as function of v(p)t for that 10 ~
model for different values op andL=128. This figure rep- t
resent the same as [®] after coarse graining. The agree- =5 ) ) )
ment with the results of our numerical integration, the nu- !G: 2. Log-log plot o= as function of as defined in the text,
merical simulatior{6] and the scaling presented in B47),  oF P=0.16(0), p=0.32(L1) andp=0.64(A). The empty symbols
is excellent. On the other hand, for the second model, Cham@®""éspond td. =512 and the filled ones to=1024. The collapse
and Aardo Reig8] did not present the result fon. They of the curves on th_e saturation regime usa¥g3/2 shows that the
studied the crossover from EW to KPZ using an indirectCUrves saturates with a KPZ behavior as expected.
method because of the slow convergence of the discrete

model to KPZ behavior. The crossover is well represented i . . .
our Fig. Xb), where we plot the same as in Figafbut for rE:GM considered, because it is due to two different rates of

the second model. The collapse of the curves in the EWf€POSItion given by Eqll). This dependance is totally gen-

regime is clear. In the intermediate regime the KPZ behavioPraI' as shown from Eq1) to Eq.(7).

appears thus, and it is expected that E) holds in that In summary, we demonstrate that the coefficients of the
regime. In Fig. 2 we plo2=W2 »(p)/[L2D(p)] as func- continuous equation have quadratic dependance.dFhis

) —_ - feature is universal for all the CGM and is due to the com-
tion of t=A(p)yD(p)/»(p) t/L*for three different values i petition between different average time rates. We propose

usingz=3/2. Asp increases, the KPZ behavior appears eargeneralized scaling for the model that reproduces the scaling
lier, but independent op all the curves saturate as a KPZ. pehavior in each regime. The numerical integration of the
The agreement with E(18) is excellent in the saturation continuous equation are in excellent agreement with the pro-

regime. The departure in the intermediate regime is due 10 ggse scalings and the numerical simulation of the models.
slow crossover to the KPZ and to finite size effects.

Finally, notice that the quadratic dependance of the coef- We thank ANPCyT and UNMdFPICT 2000/1-03-08974
ficients of the continuous equation pris independent of the for the financial support.

[1] F. Family, J. Phys. A19, L441 (1986. [8] A. Chame and F. D. A. Aaréo Reis, Phys. Rev6E, 051104

[2] A.-L. Barabasi and H. E. Stanleffractal Concepts in Surface (2002.
Growth (Cambridge University Press, New York, 199%. [9] N. G. Van Kampen,Stochastic Processes in Physics and
Meakin, Fractals, Scaling and Growth far from Equilibrium Chemistry(North-Holland, Amsterdam, 1981
(Cambridge University Press, Cambridge, 1998 [10] D. D. Vvedensky, Phys. Rev. B7, 025102R) (2003.

[3] E. V. Albano, R. C. Salvarezza, L. Vazquez and A. J. Arvia, [11] L. A. Braunstein, R. C. Buceta, C. D. Archubi, and G. Cos-
Phys. Rev. B59, 7354(1999. tanza, Phys. Rev. B2, 3920(2000.

[4] S. Clar, B. Drossel, and F. Schwabl, J. Phys.: Condens. Mattef12] Notice that if the model involves only the nearest neighbors
8, 6803(1996. the evolution equation contains only the first momgi8].

[5] Y. Shapir, S. Raychaudhuri, D. G. Foster, and J. Jorne, Phyg13] D. D. Vvedensky, A. Zangwill, C. N. Luse, and M. R. Wilby,
Rev. Lett. 84, 3029(2000. Phys. Rev. E48, 852 (1993; G. Costanzajbid. 55, 6501

[6] C. M. Horowitz, R. A. Monetti, and E. V. Albano, Phys. Rev. (1997).
E 63, 066132(2001). [14] T. Nattermann and L.-H. Tang, Phys. Rev.45, 7156(1992.

[7]1 Y. P. Pellegrini and R. Jullien, Phys. Rev. Let4, 1745 [15] J. G. Amar and F. Family, Phys. Rev. 45, R3373(1992.
(1990; Phys. Rev. A43, 920(1991. [16] M. Predota and M. Kotrla, Phys. Rev. &4, 3933(1996.

065103-4



