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The competitive growth models(CGM) involving only one kind of particles, are a mixture of two processes,
one with probabilityp and the other with probability 1−p. Thep dependance produce crossovers between two
different regimes. We demonstrate that the coefficients of the continuous equation, describing their universality
classes, are quadratic inp (or 1−p). We show that the origin of such dependance is the existence of two
different average time rates. Thus, the quadraticp dependance is a universal behavior of all the(CGM). We
derive analytically the continuous equations for two CGM, in 1+1 dimensions, from the microscopic rules
using a regularization procedure. We propose generalized scalings that reproduce the scaling behavior in each
regime. In order to verify the analytic results and the scalings, we perform numerical integrations of the derived
analytical equations. The results are in excellent agreement with those of the microscopic CGM presented here
and with the proposed scalings.
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Evolving growing interfaces or surfaces can be found in
many physical, chemical and biological processes. For ex-
ample, in film growth either by vapor deposition or chemical
deposition[1,2], bacterial growth[3] and propagation of for-
est fire[4]. The resulting interface has a rough surface that is
characterized through scaling of the interfacial widthW de-
fined asWsL ,td=hkfhi −khilg2l1/2j, wherehi is the height at

the positioni, khil=oi=1
Ld

hi is the spatial average,L is the
linear size,d is the spatial dimension andhj denote configu-
ration averages. The general scaling relation[1] for these
growing interfaces that evolves through a single model can
be summarized in the formWsL ,td,Lafst /Lzd, where the
scaling functionfsud behaves asfsud,ub sb=z/ad, for u
!1 andfsud, const foru@1. The exponenta describes the
asymptotic behavior where the width saturates due to finite
sizes effects, while the exponentb represents the early time
regime where finite-size effects are weak. The crossover time
between the two regimes ists=Lz.

The study of growth models involving one kind of par-
ticle in competitive processes has received little attention, in
spite of the fact that they are more realistic describing the
growing in real materials, where usually there exists a com-
petition between different growing processes. As an ex-
ample, in a colony of bacteria growing on a substrate, a new
bacteria can be borne near to another and stay there, move
into another place looking for food or die. This “bacteria”
can be thought as a particle undergoing either a deposition/
evaporation process or deposition/surface relaxation.

The processes involved in the competitive growth models
(CGM) could have different characteristic average time rate.
Recently Shapiret al. [5] reported experimental results of
surface roughening during cyclical electrodeposition dissolu-
tion of silver. Horowitz, Monetti, and Albano[6] introduced
a competitive growth model between random deposition with
surface relaxation(RDSR) with probability p and random
deposition (RD) with probability 1−p, called RDSR/RD.
The authors proposed that the scaling behavior is character-

istic of an Edward Wilkinson(EW) equation, where the co-
efficient associated with the surface tensionn depends onp.
The dependance ofn on p governs the transition from RDSR
to RD. Using a dynamic scaling ansatz for the interface
width W they found that the results are consistent provided
that n~p2. Also Pellegrini and Jullien[7] have introduced
CGM between ballistic deposition(BD) with probability p
and RDSR with probability 1−p, called BD/RDSR. For this
model Chame and Aarão Reis[8] presented a more careful
analysis in1+1−d and showed that there exists a slow cross-
over from an EW to a Kardar-Parisi-Zhang(KPZ) for any
p.0. They also found that the parameterp is connected to
the coefficientl of the nonlinear term of the KPZ equation
by l,pg, with g=2.1.

In this communication, we show that the origin of such
dependance is the existence of two different average time
rates. Thus, the quadraticp dependance is a universal feature
of all the CGM. Thep dependance on the coefficients of the
continuous equations is obtained analytically from the micro-
scopic dynamics.

In order to test our hypothesis, we derive the analytical
continuous equations for the local height for the RDSR/RD
and BD/RDSR models. The procedure chosen here is based
on regularization and coarse graining of the discrete Lange-
vin equations obtained from a Kramers-Moyal expansion of
the master equation[9–11].

Let us introduce first the general treatment of this prob-
lem. Let us denote byhistd the height of theith generic site at
time t. The sethhi , i =1, . . . ,Lj defines the interface. Here we
distinguish between two competitive processes:A with prob-
ability p and average time of depositiontA, and B with prob-
ability 1−p and average time of depositiontB. In deposition
processes withp=1 the average time of depositiont0 is
given byt0

−1=hdhi /dtjsp=1d. If the process is made with prob-
ability p then tA

−1=hdhi /dtjspd=p hdhi /dtjsp=1d. The same
holds for a process with probabilitys1−pd. Thus, the par-
ticles are deposited at an average rate
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tA =
t0

p
, tB =

t0

1 − p
. s1d

In the average time of each process, the height in the sitei
increases by

hist + tAd = histd + a'p Ri
A,

hist + tBd = histd + a's1 − pdRi
B, s2d

whereRi
A andRi

B are the growing rules for processesA and
B, respectively, anda' is the vertical lattice spacing. Ex-
pandinghist+tAd andhist+tBd to second order in Taylor se-
ries aroundtA andtB, we obtain

hist + tJd − histd <
dhi

dt
tJ, s3d

for the processJ=A,B. Thus, the evolution equation for the
height (in the sitei) for this CGM is given by

dhi

dt
= Ki

s1,Ad + Ki
s1,Bd + histd, s4d

where the first moments of the transition rate for each pro-
cess[12,13] are

Ki
s1,Ad =

a'

tA
p Ri

A,

Ki
s1,Bd =

a'

tB
s1 − pdRi

B, s5d

and the Gaussian thermal noisehistd has zero mean and co-
variance

hhistdh jst8dj = a'sKi
s1,Ad + Ki

s1,Bdddi j dst − t8d. s6d

In order to test our analytical result, we use two models.
The first model RDSR/RD[6] considers a mixture of RDSR
(processA) with probabilityp and RD(processB) with prob-
ability 1−p. Let us introduce the growth rule for each pro-
cess for the first model. In the RD growth model one chose a
column of a lattice, at random, amongL and a particle is
launched until it reaches the top of the selected column. The
RDSR is a variant of the RD: a particle is released from a
random position but when it reaches the top of the selected
column is allowed to relax to the lowest nearest neighbor
(nn) column if at least one of the nn heights is lower than the
selected one. If the height of both of the nn is lower than the
selected one the relaxation takes place with equal probability
to one of them. For RD,WsL ,td does not depend onL. This
means that the widthW does not saturate due to the lack of
lateral correlations. Thus, in this model:Wstd, tbRD. More-
over, the RDSR model generates lateral correlations, there-
fore one hasbRDSR=1/4 andaRDSR=1/2. Thefirst moment
of the transition rate for these processes is

Ki
s1,Ad =

a'

tA
psvi

s2d + vi+1
s3d + vi−1

s4d d,

Ki
s1,Bd =

a'

tB
s1 − pdvi

s1d, s7d

where the rules for both processes can we written as

vi
s1d = 1,

vi
s2d = QsHi

i+1dQsHi
i−1d,

vi
s3d = H1

2
f1 − QsHi

i+1dg + QsHi
i+1dJf1 − QsHi

i−1dg,

vi
s4d = H1

2
f1 − QsHi

i−1dg + QsHi
i−1dJf1 − QsHi

i+1dg, s8d

whereHi±k
i±s=shi±s−hi±kd /a', andQszd is the unit step func-

tion defined asQszd=1 for zù0 andQszd=0 for z,0. The
representation of the step function can be expanded as
Qszd=ok=0

` ckz
k providing thatz is smooth. In any discrete

model there is in principle an infinite number of nonlineari-
ties, but at long wavelengths the higher order derivatives can
be neglected using scaling arguments, since one expects af-
fine interfaces over a long range of scales, and then one is
usually concerned with the form of the relevant terms. Thus,
keeping the expansion of the step function to first order in his
argument and replacing the expansion Eq.(8), Eq. (4) can be
written as

dhi

dt
=

a's1 − pd
tB

+
a'p

tA
S1 + c1

D2hi

a'

D + histd, s9d

where D2hi =hi+1−2hi +hi+1.ai
2 ]2h/]x2chi

, and ai is the
horizontal lattice spacing. Replacing the rates given by Eq.
(1) in Eq. (9) and using a standard coarse-grain approach
[10,11] the continuous equation for this CGM is

dh

dt
= Fspd + nspd

]2h

] x2 + hsx,td, s10d

whereh=hsx,td and

Fspd =
a'

t0
fs1 − pd2 + p2g,

nspd = 2 c1
ai

2

t0
p2. s11d

The noise covariance is given by

hhsx,tdhsx8,t8dj = Dspddsx − x8ddst − t8d, s12d

where

Dspd = aia'Fspd. s13d

Equations(11) and(13) show that the quadratic dependance
on the coefficients of the continuous equation, arises natu-
rally as a feature of the CGM and is due to the existence of
different average time rates.
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The second model is a mixture of RDSR with probability
1−p (B process) and ballistic deposition(BD) with probabil-
ity p (A process) [8]. The evolution rules for RDSR arevi

j,
with j =2,3,4 [see Eq.(8)]. In the BD model, the incident
particle follows a straight trajectory and sticks to the surface
at the columni. The height in the columni is increased in
maxfhi +1,hi+1,hi−1g. If this process is done with probability
p (A process), the rules can be summarized as

vi
s5d = QsHi+1

i dQsHi−1
i d,

vi
s6d = Hi

i+1f1 − QsHi+1
i dgf1 − QsHi+1

i−1dg,

s14d
vi

s7d = Hi
i−1f1 − QsHi−1

i dgf1 − QsHi−1
i+1dg,

vi
s8d =

1

2
dsHi−1

i+1,0dhHi
i+1f1 − QsHi+1

i dg + Hi
i−1f1 − QsHi−1

i dgj,

wheredsz,0d=Qszd+Qs−zd−1 is the Kronecker delta. Fol-
lowing the steps leading to Eq.(10) the evolution equation
for this process can be written as

dh

dt
= Fspd + nspd

]2h

] x2 + lspdS ] h

] x
D2

+ hsx,td, s15d

where

Fspd =
a'

t0
fs1 − pd2 + c0

2 p2g,

nspd =
ai

2

t0
F1

2
p2s1 − c0 − 2c0c1d + 2c1s1 − pd2G , s16d

lspd =
ai

2

t0 a'

p2c1s5 − 4c0 − c1d.

The covariance of noise andDspd is given by Eq.(12) and
(13), respectively. Notice that we have to changep by 1−p
in all the above equations for RDSR, because in the first
model RDSR is a kindA process and now is a kind B pro-
cess. Equation(16) shows again the quadratic dependance on
the coefficients of the continuous equation. The quadratic
dependance ofl on p, found by Chame and Aarão Reis[8],
is a general feature of the CGM.

As both models have an EW behavior, it is expected that
in that regime the following generalized scaling ansatz[6,14]

W2sp,L,td , L2afDspd/nspdgf„nspdt/Lz
…, s17d

where fsud,u2b for u!1 and fsud,const foru@1. More-
over, the second model is represented by a mixture of EW
and KPZ universality classes. In the early time regime
Wstd, tbRDSR, while a crossover to a KPZ, withbKPZ=1/3
and a;aKPZ=1/2, is expected in the intermediate regime
before the saturation. Thus, for the KPZ regime we propose
the following generalization[15] of the scaling behavior of
the width:

W2sp,L,td , L2afDspd/nspdgf„lspdÎDspd/nspd t/Lz
…,

s18d

wherez=3/2, andfsud,u2bKPZ for u!1 andfsud,const for
u@1.

In order to test our analytical result and the proposed scal-
ings, we perform a numerical integration of Eq.(10) and
(15), and computeW2 for both models.

Notice that in order to numerically integrate the continu-
ous equation, we do need a continuum representation of the
Q function to numerically compute the coefficientsc0 andc1

FIG. 1. (a) Log-log plot of W2nspd /Dspd for the RDSR/RD model as function ofnspdt for L=128. The different symbols represent
different values ofp, p=0.04s+d, p=0.08shd, p=0.016snd, p=0.32s+d, andp=0.64s* d. Here we usedC=2.58 andb=0.2 as parameters
of the Q-function representation. The dashed lines are used as guides to show the RD regime with 2b=1 and the EW regime with 2b
=0.5.(b) Log-log plot ofW2nspd /Dspd for the BD/RDSR model as function ofnspdt for L=1024. The symbols represent the same as in Fig.
1(a). Here we usedC=0.18 andb=0.5. The collapse of the curves at the earlier stage clearly shows the EW behaviors2b=0.5d. After this
stage the curves split and undergo a slow crossover to the KPZ behaviors2b=0.66d. The dashed lines are used as guides to show the EW
regime with 2b=1/2 and the KPZregime. The slope showed here is 2b=0.61.
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related to the ones of the continuous equations. To perform
the numerical integration, we chose the shifted hyperbolic
tangent[16] as the continuous representation ofQ function
defined asQsxd=h1+tanhfCsx+bdgj /2, whereb is the shift
andC is a parameter that allows one to recover theQ in the
limit C→`. The numerical integration was made in short
lattices using a discretized version of the continuous Eqs.
(10) and(15). The results in large systems and the details of
the integration are beyond the scope of this communication
and will be published elsewhere.

For the first model, Horowitz, Monetti, and Albano[6]
presented their data from simulations plotting the scaling re-
lation W/Lap−d vs t /Lzp−y. Clearly, theird=1 and y=2 is
related to ournspd andDspd [see Eq.(11) and(13)]. In Fig.
1(a) we plot W2 nspd /Dspd as function of nspdt for that
model for different values ofp andL=128. This figure rep-
resent the same as in[6] after coarse graining. The agree-
ment with the results of our numerical integration, the nu-
merical simulation[6] and the scaling presented in Eq.(17),
is excellent. On the other hand, for the second model, Chame
and Aarão Reis[8] did not present the result forW. They
studied the crossover from EW to KPZ using an indirect
method because of the slow convergence of the discrete
model to KPZ behavior. The crossover is well represented in
our Fig. 1(b), where we plot the same as in Fig. 1(a) but for
the second model. The collapse of the curves in the EW
regime is clear. In the intermediate regime the KPZ behavior
appears thus, and it is expected that Eq.(18) holds in that

regime. In Fig. 2 we plotW̃2=W2 nspd / fL2aDspdg as func-
tion of t̃=lspdÎDspd /nspd t /Lz for three different values ofp
usingz=3/2. Asp increases, the KPZ behavior appears ear-
lier, but independent ofp all the curves saturate as a KPZ.
The agreement with Eq.(18) is excellent in the saturation
regime. The departure in the intermediate regime is due to a
slow crossover to the KPZ and to finite size effects.

Finally, notice that the quadratic dependance of the coef-
ficients of the continuous equation onp is independent of the

CGM considered, because it is due to two different rates of
deposition given by Eq.(1). This dependance is totally gen-
eral, as shown from Eq.(1) to Eq. (7).

In summary, we demonstrate that the coefficients of the
continuous equation have quadratic dependance onp. This
feature is universal for all the CGM and is due to the com-
petition between different average time rates. We propose
generalized scaling for the model that reproduces the scaling
behavior in each regime. The numerical integration of the
continuous equation are in excellent agreement with the pro-
pose scalings and the numerical simulation of the models.
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FIG. 2. Log-log plot ofW̃2 as function oft̃ as defined in the text,
for p=0.16ssd, p=0.32shd andp=0.64snd. The empty symbols
correspond toL=512 and the filled ones toL=1024. The collapse
of the curves on the saturation regime usingz=3/2 shows that the
curves saturates with a KPZ behavior as expected.
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